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Exercise #1
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To calculate the distance between dense planes, we can graphically deduce that three
series of dense planes exist on the cube's diagonal. It is a stacking where atoms find
themselves at the same position every three planes (stacking ABC, ABC...).

A..B..C.. stacking

Face-centered cubic structure

We can calculate the distance between planes by taking the norm of the normal (111) to the
dense planes.
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Base vectors of the primitive cell:

The volume of the primitive cell is 1/4th of that of the centered cell, as we can easily verify
by the triple product. The primitive cell thus contains one atom per cell. We can calculate
the distance between planes (111) by choosing the base vectors of the primitive cell. We
carry out calculations in the orthogonal base [100], [010], [001].
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1.5

The Atomic Packing Factor (APF) is the fraction of the volume of the unit cell that is
occupied by atoms. For an FCC structure, the APF can be calculated as:

Volume of atoms in unit cell
APF = =

Volume of unit cell

Assuming each atom is a sphere, and that FCC unit cell has 4 atoms:

16
Volume of atoms = 4 X §nr3 = ?nr3

For FCC, the close directions are <110>, and thus, atom radius (r) and lattice parameter
(a) are related as,

a = 2V2r

volume of cubic crystal unit cell = a® = (2V2)3r3

As such, APF is,

16/37”3= -
16vV2  3V2

The mathematical proof that the highest possible packing efficiency for hard spheres is
approximately 0.74 was first rigorously established in 1998 by American mathematician
Thomas Hales. This proof confirmed what is known as the Kepler Conjecture, a problem
that had been posed over 300 years earlier by the astronomer Johannes Kepler in 1611.

APF = ~ 0.74

Kepler conjectured that the densest possible arrangement of equal-sized spheres was the
face-centered cubic (FCC) or hexagonal close-packed (HCP) arrangements, both of which
have a packing efficiency of approximately 74% (or 0.74). However, this conjecture
remained unproven for centuries, and although it was widely believed to be true, it required
a formal mathematical proof.

Hales' proof used a combination of traditional geometric methods and extensive computer
calculations to rigorously establish that no other arrangement of spheres could surpass this
packing density. The proof was highly complex, involving the examination of numerous
possible configurations, and was one of the first significant mathematical proofs to rely
heavily on computational methods.

In 2014, Hales and a team of collaborators produced a formal verification of the proof using
computer proof-checking software, fully confirming the result with a higher level of rigor than
the original 1998 proof. This development ensured that the 0.74 packing efficiency is the
mathematically proven highest possible for hard spheres.
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1.6

The coordination number is the number of nearest-neighbor atoms surrounding a given
atom.In an FCC structure, each atom has 12 nearest neighbors: 4 in the same plane, 4 in
the plane above, and 4 in the plane below. Therefore, the coordination number of the FCC
structure is 12. Most metals have compact crystal structures due to their electronic structure
and bonding, and thus, they tend to have high coordination numbers.

1.7

The density (p) of a material can be calculated using the formula:

ZXM
NyxV

p:

where:

Z is the number of atoms per unit cell (4 atoms for FCC),
M is the molar mass (atomic weight),

Na is Avogadro’s number (6.022x10%3),

V(ad) is the volume of the unit cell.

1.8
For copper (Cu):

e r=0.128x10"7 cm,

e a=2V2r=0.361x10"7cm,

e M=63.55g/mol

o Z=4, Na=6.022 x10% atoms/mol
o V=a3=470x10"%3

B 4 x 63.55
T 6.022 x 1023 x 4.7 x 1023

p =8.96 g/cm3

Exercise #2

The volume of a tetragonal cell is given by.

V =a’c=(5.094)*(5304)=137.6 A®

The volume of a monoclinic cell is given by:

V., =abcsin(B) = (5.156)(5.191)(5.304)sin(98.9°) = 140.25 A®

There is thus an expansion when the cell transforms from the tetrahedral structure to the
monoclinic structure. This expansion is 1.9%.
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Most ceramics cannot stand volume changes larger than 0.1%. Thus, when the zirconium
dioxide transforms, it cracks. To use the ZrO2zin mechanical applications, we must stabilize
the tetrahedral or cubic phase with additives such as Y20s. Conversely, the phase
transformations of ZrO2 can make the ceramics tougher (resistant to rupture). We can
introduce, e.g., particles of ZrO2 in aluminum oxide (Al203). When a crack propagates in the
aluminum oxide, it releases internal stresses that maintain ZrO: in the tetrahedral phase,
which is metastable at ambient temperature. As a result, the ZrO2 particles expand and close
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Fig. 2.1 Crack propagating through a matrix containing particulates of ZrO-.

Exercise 3 Crystalline polyethylene

Polyethylene crystallizes in a tetragonal structure. How many carbon (and hydrogen) atoms
will there be in one cell knowing that the PE's density is p=0.9972 g/cm3?

Suuwo] uoswoy | / Burgstiand A[00/s3001g €00 (9)

a=741A
b=494 A
c=255A

O Hydrogen
o Carbon

So for orthorhombic crystal, the volume of the unit cell V= a*b*c. If we assume that each
carbon atom is bonded with two H atoms, we can calculate the rough number of those
molecules within the unit of the given cell (a=0.741nm, b=0.494 nm, and ¢=0.255 nm) using
the density p=0.9972 g/cm?. The volume of this orthorhombic unit cell is 9.33 x1022 cm

So, C¥+2H= 14 AMU= 14g/mol and divided by Avogadro's number 6.022 x10%
molecules/mol, then the CH2 molecule in the polyethylene crystal has 2.32 X102
g/molecule.The number of molecules in the unit cell would be

= (9.33 x1022 cm®) * (0.9972 g/cm?) /(2.32 X102 g/molecule)~ 4 molecules, or 4 carbons
and 8 Hydrogen atoms
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